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Abstract. We investigate a flexible method by which we can test the unitarity of the quark flavor-mixing
matrix step by step. Singular-value-decomposition (SVD) techniques are used in analyzing the mixing
matrix over a broader parameter region than the unitarity region. Unitary constraints let us extract CP -
violating properties without any specific parameterization when the magnitudes of at least three mixing-
matrix elements in three-generation quark mixing are given. This method can also be applied to the analysis
of lepton flavor mixing, in which only a few moduli are presently measured.

1 Introduction

The Cabibbo–Kobayashi–Maskawa (CKM) [1,2] matrix
makes it possible for us to explain all flavor changing weak
decay processes and CP -violating phenomena up to now.
Unitarity of the CKM matrix in the standard model (SM)
is a unique property that we cannot loosen. We can use
any parameterization of the CKM matrix as long as its
unitarity is conserved. The original parameterization for
three-generation quark mixing is the Kobayashi–Maskawa
(KM) parameterization. The standard parameterization
proposed by Chau and Keung [3,4] is the product of three
complex rotation matrices which are characterized by the
three Euler angles, θ12, θ13, θ23 and a CP -violating phase
δ13. A more widely used one is the Wolfenstein parame-
terization [5], which was suggested as a simple expansion
of the CKM matrix in terms of the four parameters λ, A, ρ
and η. It has also been known that the CKM matrix for
the three-generation case can be parameterized in terms
of the moduli of four of its elements [6]. This four-value-
KM (4VKM) parameterization is rephasing invariant and
directly related to the measured quantities. In the three-
generation case we always need four independent param-
eters to define a unitary 3 × 3 matrix, as explained, e.g.
θ12, θ13, θ23 and δ13, or λ, A, ρ and η or even only the mod-
uli of any four independent elements of the matrix.

The 4VKM parameterization has several advantages
over the other parameterization. This parameterization
does not need any specific representations for the mixing
angles as long as the CKM is unitary, and no ambigu-
ity over the definition of its complex CP phase is present
moreover. Secondly, the Jarlskog invariant quantity JCP

and non-trivial higher invariants can be reformulated as
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functions of moduli and quadri-products [7]. However, in
the 4VKM parameterization, the initial four-moduli in-
put values should be fixed by experiments. Once we set
four moduli to specific values, the remaining five mixing
element moduli are automatically fixed and we may lose
some characteristic effects from the interplay between the
moduli. From a conceptual point of view it is better if
we can reduce the number of a priori experimental input
values. This paper presents a novel parameterization in
which we start with three moduli input values. Through
simple algebraic relations we can determine the remain-
ing six moduli of the mixing elements. With a broader
parameter space we can step by step check the compat-
ibility between the measured values of mixing elements
and their unitarity properties.

Many groups have made global fits and numerical
works on CKM matrix elements with conventional rep-
resentations which satisfy unitarity [8]. One of the prob-
lems in these conventional parameterizations is that they
are fully and completely unitary and are not flexible so as
to include possible non-unitary properties resulting from
unknown new physics. Therefore, it is a complex task to
make a step by step test to check the unitarity with ex-
perimental data if you use a unitary parameterization. In
the following, we present three extended definitions for
the unitarities of the mixing matrix V in the order of the
strength of the constraints.

Weak unitary conditions (WUC)

We define the mixing matrix V to be weak unitary if it
satisfies
∑
α

|Viα|2 =
∑

j

|Vjβ |2 = 1for alli = u, c, t, andβ = d, s, b.

(1)
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These constraints appear to be well satisfied experimen-
tally for the three-generation case, and we start from this.
Actually it was pointed out that there is an apparent func-
tional violation in the available data: |Vud|2 + |Vus|2 +
|Vub|2 < 1 [9]. For such a case, with

∑
α |Vuα|2 = a < 1,

we can easily generalize our method, and we just start
with this new condition.

Almost unitary conditions (AUC)

In addition to the constraint equation (1), if the following
constraints are satisfied:

∑
α,i �=j

V ∗
iαVjα =

∑
j,α�=β

V ∗
jαVjβ = 0 for some parts of

i, j = u, c, t, and α, β = d, s, b, (2)

let us call the mixing matrix almost unitary. Some combi-
nations, which do not satisfy (2), may not make closed tri-
angles, and may have different areas even though making
closed triangles. We have no specific models in which the
mixing matrix satisfies these almost unitary conditions.
Therefore, we will not consider the case with AUC.

Full unitary conditions (FUC)

This corresponds to the usual unitarity in which (1) and
(2) are satisfied for all the indices. All six unitarity trian-
gles from (2) have the same areas.

In Sect. 2, we propose an alternative and a more flex-
ible parameterization of the CKM matrix in terms of the
three moduli and the one independent parameter which
is induced by the singular-value-decomposition (SVD)
method. We describe how to get the new parameteriza-
tion of the CKM matrix by using the SVD method in the
three-generation case. Unlike the previous parameteriza-
tion with four moduli [6], we have a more flexible lever-
age to test the unitarity step by step. We start with only
three moduli rather than four moduli, and the remaining
one can be adjusted depending on the condition of the
unitarity, which we apply, i.e. WUC or FUC. In Sect. 3,
we analyze the CKM matrix numerically with our param-
eterization with the SVD method. Conclusions are also in
Sect. 3. Appendices A and B include details on the SVD
method.

2 New parameterization of the CKM matrix
by the SVD method

We start with a definition in such a way that it satis-
fies the weak unitary conditions, (1): we have six con-
straint equations for the three-generation mixing. These
constraints are only parts of the unitarity conditions and
the introduced mixing matrix V may not be fully unitary.
We study this explicitly with the three-generation quark
flavor-mixing matrix V considering their absolute values

and choose three independent moduli as starting input pa-
rameters. The explicit analysis depends on the choice of
the three input parameters. We consider the case with
Our choice (Set A): input parameters |Vus|, |Vub|, |Vcb|.

We can also choose different sets of input parameters,
for example:
Set B: input parameters |Vud|, |Vus|, |Vcd|;
Set C: input parameters |Vus|, |Vcs|, |Vcb|.

Mathematically the three parameterizations of Set A,
B and C are all equivalent if the three input values of each
set are independent of each other and all are equally pre-
cisely measured. However, in reality, the upper-left 2 × 2
part of CKM matrix is approximately unitary and only one
independent variable is dominantly evident, for example,
the parameter λ in the Wolfenstein parameterization or
the Cabibbo angle in sin θc. Therefore, Set B would be the
worst choice for numerical analyses. For our choice of Set
A, the three inputs are all off-diagonal and independent of
each other, and all three values can be determined by the
three semileptonic decays, in which new physics contri-
butions are severely suppressed. Therefore, we select the
upper off-diagonal elements in V , namely, |Vus|, |Vub|, |Vcb|
as the initial input variables in our analysis, i.e. the case
with Set A.

If we are given the three input values of Set A, then
we get the following values |Vud| and |Vtb|:

|Vud|2 = 1 − |Vus|2 − |Vub|2, (3)
|Vtb|2 = 1 − |Vub|2 − |Vcb|2. (4)

To obtain the four remaining elements, |Vcd|, |Vcs|, |Vtd|
and |Vts|, we write the four constraints for these four ele-
ments in (1) in matrix form:

RX = B, (5)

where

R =




1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


 , (6)

X = (|Vcd|2, |Vcs|2, |Vtd|2, |Vts|2)T, (7)

B = (1 − |Vcb|2, 1 − |Vtb|2, 1 − |Vud|2, 1 − |Vus|2)T. (8)

In (7) and (8), X and B are column vectors, and T means
transpose of the matrix. Because of detR = 0, there is not
a unique solution if any. In such a situation there exists
a very powerful set of techniques, known as the singular-
value-decomposition (SVD) method. The details of this
method are given in Appendix A. The remaining mixing
elements are expressed as follows:

|Vcd|2 = −a + u1,

|Vcs|2 = a + u2, (9)
|Vtd|2 = a + u3,

|Vts|2 = −a + u4,
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where

u1 =
1
4
(1 + 2|Vus|2 + |Vub|2 − 2|Vcb|2),

u2 =
1
4
(3 − 2|Vus|2 − |Vub|2 − 2|Vcb|2), (10)

u3 =
1
4
(−1 + 2|Vus|2 + 3|Vub|2 + 2|Vcb|2),

u4 =
1
4
(1 − 2|Vus|2 + |Vub|2 + 2|Vcb|2),

and a new variable, “a”, is introduced as a coefficient at-
tached to the general solution. If there is no flavor mixing,
we can set a = 1/4. The value of “a” can be determined
from (9) if we know any value of |Vcd|, |Vcs|, |Vtd|, |Vts|.
The constraints of non-negative |Vij |2 are applied for the
range of the variable a:

amin = max(−u2, −u3), amax = min(u1, u4).

We note that when the three input values |Vus|, |Vub|, |Vcb|
are given, the moduli squared of the remaining four mix-
ing elements |Vcd|, |Vcs|, |Vtd|, |Vts| are just quadratic func-
tions of the parameter a. As “a” increases, |Vcs| and |Vtd|
increase, while |Vcd| and |Vts| decrease. |Vud| and |Vtb| are
fixed by the three input values and are independent of
the parameter a. The bounds on the parameter “a” will
determine the regions of FUC and WUC, which will be
explained later.

As a next step, we further assume that the mixing
matrix V satisfies the full unitary conditions. Then we
have six more constraints:

∑
j=d,s,b

VijV
∗
kj = 0, (i, k) = (u, c), (u, t), (c, t),

∑
j=u,c,t

VjiV
∗
jk = 0, (i, k) = (d, s), (d, b), (s, b). (11)

These constraints cannot be represented analytically with-
out the introduction of complex numbers. If we know all
the absolute values of V , however, we can express the nec-
essary and sufficient conditions for the constraints, (11),
in a geometric way. Equations (11) give six unitarity tri-
angles corresponding to each six constraints, and all six
triangles have an equal area that is directly related to the
Jarlskog’s rephasing invariant parameter JCP . If we take
one of the constraints (11), for example,

∑
j=u,c,t

VjdV
∗
jb = 0,

a triangle is composed of three sides with lengths |Vud|
|Vub|, |Vcd||Vcb|, and |Vtd||Vtb|, with the necessary condi-
tion

|Vcd||Vcb| ≤ |Vud||Vub| + |Vtd||Vtb|, (12)

where the equality holds in the CP -conserving case. For
a more general argument, let us rewrite (12) as follows:

l2 ≤ l1 + l3, (13)

where, for example, l1 = |Vud||Vub|, l2 = |Vcd||Vcb|, and
l3 = |Vtd||Vtb|. After taking the square on both sides of
(13) we can rearrange the constraint equation as follows:

f(l1, l2, l3) ≡ 2l21l
2
2 + 2l22l

2
3 + 2l21l

2
3 − l41 − l42 − l43 ≥ 0, (14)

where we denote the newly introduced function f for later
use. Using Heron’s formula, the square of the triangular
area can be rewritten as follows:

A2 = s(s − l1)(s − l2)(s − l3) =
1
16

f(l1, l2, l3), (15)

where s = (l1 + l2 + l3)/2. So the necessary condition (14)
for the complete triangle means a non-negative value of
A2. Jarlskog’s invariant parameter is written as follows:

JCP = 2A =
1
2

√
f(l1, l2, l3). (16)

If we expand f in terms of the parameter a, we can write

f = −(1 − |Vub|2)2a2

+ 2
[
|Vud|2|Vub|2(|Vtb|2 − |Vcb|2)

× (|Vcb|2u1 − |Vtb|2u3)(|Vcb|2 + |Vtb|2)
]
a

+ 2|Vud|2|Vub|2[|Vcb|2u1 + |Vtb|2u3]
− (|Vcb|2u1 − |Vtb|2u3)2 − |Vud|4|Vub|4, (17)

where the function f is quadratic in a. We can get the
boundaries of the constraint (13), and denote the two roots
of the quadratic equation by a− and a+ (> a−). Two
real roots and the boundary points in the interval depend
on only the three input values. The non-existence of real
solutions of the quadratic equation means that the three
input values do not allow the FUC to be present. We note
that if we force the mixing matrix V to be fully unitary,
then six triangles from the constraints (11) have the same
area, which are the sufficient conditions for the FUC.

We can relate the coefficient a to the CP -violating pa-
rameter in another representation of the mixing matrix
with the FUC. Let us consider the standard parameteri-
zation of the CKM matrix,

VCKM = (18)



c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13

s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13


 ,

where sij = sin θij , cij = cos θij . We find that the coeffi-
cient a is directly related to the parameters in the standard
representation:

a = −2s12c12s23c23s13 cos δ13

− 1
8

cos 2θ12 cos 2θ23[−3 + cos 2θ13]. (19)

The three angles α, β, γ of the unitarity triangle, which
characterize CP -violation, are defined as follows:

α = Arg[−(VtdV
∗
tb)/(VudV

∗
ub)], (20)

β = Arg[−(VcdV
∗
cb)/(VtdV

∗
tb)], (21)

γ = Arg[−(VudV
∗
ub)/(VcdV

∗
cb)]. (22)
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Table 1. Input values of the matrix elements and their sources referred from the PDG. The
output values are the allowed intervals (95% CL) for WUC and FUC

Matrix elements PDG values Sources

Input |Vus| 0.2196 ± 0.0026 Ke3 decays
|Vub| (3.6 ± 0.7) × 10−3 B semileptonic decays
|Vcb| (41.2 ± 2.0) × 10−3 B semileptonic decays

Matrix elements WUC FUC PDG

Output |Vcd| 0.210 ∼ 0.224 0.214 ∼ 0.224 0.219 ∼ 0.226
|Vcs| 0.9735 ∼ 0.9768 0.9735 ∼ 0.9760 0.9732 ∼ 0.9748
|Vtd| 0.004 ∼ 0.045 0.004 ∼ 0.014 0.004 ∼ 0.014
|Vts| 0.001 ∼ 0.045 0.035 ∼ 0.045 0.037 ∼ 0.044

The sum of those three angles, defined as the intersections
of three lines, would be always equal to 180◦, even though
the three lines may not be closed to make a triangle, i.e.
in case that the CKM matrix is not unitary at all. We can
also define these quantities from the area of the unitary
triangle and its sides:

sin β′ =
2A

|Vtd||Vtb||Vcd||Vcb| , (23)

sin γ′ =
2A

|Vud||Vub||Vcd||Vcb| , (24)

α′ = π − β′ − γ′, (25)

when the FUC is fully satisfied and the area of the tri-
angles can be defined from (15). Any experimental data
that indicate α �= α′ or β �= β′ or γ �= γ′ mean that
the three-generation quark-mixing matrix V is not fully
unitary.

3 Numerical results and discussion

For given input values of |Vus|, |Vub|, |Vcb|, the parame-
ter “a” is divided into two regions depending on whether
the FUC is satisfied or not. We can divide the range of
the parameter into two by setting l1 = |Vud||Vub|, l2 =
|Vcd||Vcb|, l3 = |Vtd||Vtb|, for example:
(1) Region I: The maximum among l1, l2, l3 is larger than
the sum of the other two values. In other words it is not
possible to make any triangle with these three segments.
This region is outside of the interval of (a−, a+).
(2) Region II: The maximum among l1, l2, l3 is smaller
than the sum of the other two values. In other words it is
possible to make a unitarity triangle. This region is con-
fined to (a−, a+).

In region I, we cannot define JCP . On the contrary we
can define JCP in region II and calculate it with l1, l2, l3
as shown in (15). In general region II is surrounded by
region I. The two boundary points of region II correspond
to the case of the CP -conserving case.

For numerical analyses, we refer to the Particle Data
Group (PDG) [4]. Current values of the three input mod-
uli and the corresponding sources of the measured matrix

elements are summarized in Table 1. The input values of
|Vus|, |Vub|, |Vcb| are randomly generated within 95% CL
with uniform distributions. Each input determines both
of the two regions for the WUC and FUC. The WUC is
confined to the interval (amin, amax) of which calculations
are described in the previous section. The FUC is confined
into the interval (a−, a+) which is a subset of (amin, amax).
In the restricted regions we again generated randomly the
values of the parameter a for our numeric calculations.
Figure 1a shows scattered points for |Vtd| and |Vts| values
when we apply the WUC to the choice of the parameter a.
The scattered points compose a quadrant in the |Vtd|–|Vts|
plane. In the figure we also draw the curved axis for the
parameter a. The labels on the curve are valid only when
we set the three inputs to the center values in Table 1. If
other input values are taken, the numeric labelling should
be slightly changed. Figure 1b presents scattered points
when we apply the FUC to the choice of parameter a.
The allowed region for FUC is much narrower than that
for the WUC and is included in the region for the WUC.
The curved axis for the parameter a is identical to that in
Fig. 1a. Figure 2 shows the corresponding scattered points
for |Vud| and |Vcd| when we take the WUC and FUC. The
modulus |Vud| does not depend on the parameter a and
|Vcd| is directly related to the value of a. The axis for the
parameter a is, therefore, a vertical line along the axis of
|Vcd|.

In Table 1, we show the numerical output values for
the moduli, |Vcd|, |Vcs|, |Vtd|, |Vts|, within 95% CL with the
unitary conditions, WUC and FUC. For comparison, we
also show the results of the PDG values. The PDG values
of individual matrix elements were determined from the
three-level constraints from weak decays of the relevant
quarks or from deep inelastic neutrino scattering together
with the assumptions of three-generation FUC.

As can be seen, the allowed regions for the WUC are
much broader than those for the FUC and the latter are
subsets of the former. Our numerical results are consistent
with 90% CL on the magnitudes of mixing elements in
PDG: |Vtd| � 0.004 ∼ 0.014 and |Vts| � 0.037 ∼ 0.044,
particularly. We can see that the FUC and hierarchical
input values of |Vus|, |Vub|, |Vcb| imply |Vtd| < |Vts|. This
contrasts with the results of the WUC. In this case, it is
possible that |Vtd| is equal to or even larger than |Vts|.
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Fig. 1a,b. The scattered plots for |Vtd| and |Vts| values which
satisfy the WUC a and FUC b in the case of Set A. The allowed
points are calculated from the uniformly generated three input
values in 95% CL. The curved axis for the parameter “a” is
drawn with the centered input values in Table 1, not with the
randomly generated input values

If we start with different mixing elements, like |Vud|,
|Vus|, |Vcd| (i.e. Set B), then |Vtd| and |Vub| are first fixed
and we introduce the new parameter b from the SVD
method, as shown in Appendix B in detail. The remaining
four moduli, |Vcs|, |Vcb|, |Vts|, and |Vtb|, are dependent on
the parameter b and have correlated values. Precise mea-
surements for one of the four moduli will fix the remaining
three moduli. Similarly, if we start with |Vus|, |Vcs|, |Vcb|
(i.e. Set C), then |Vcd| and |Vts| are fixed and the new pa-
rameter c will be introduced by following the SVD method.
The remaining four moduli, |Vud|, |Vub|, |Vtd| and |Vtb|, de-
pend on the parameter c and have correlated values. How-
ever, as explained in Sect. 2, it would be much more dif-
ficult numerically to perform the analysis with Set B or
C compared to Set A due to the approximate unitarity of
the upper-left 2 × 2 part of the CKM matrix.

To conclude, we proposed a flexible method in which
the unitarity of the quark-mixing matrix can be tested
step by step. The singular-value-decomposition (SVD)
method is used in analyzing the mixing matrix over a
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Fig. 2a,b. The scattered plots for |Vud| and |Vcd| values which
satisfy the WUC a and FUC b in the case of Set A. The two
panels correspond to two panels in Fig. 1

broader parameter space than the unitary region as well
as in presenting a new parameterization of the CKM ma-
trix. The question whether the mixing matrix satisfies the
WUC or FUC is a quite difficult and complex matter
within the standard PDG parameterization or a similar
unitary parameterization. In the parameterization by the
SVD method the CKM matrix is represented by three
moduli and an additionally induced flexible parameter
a 1. Once the value of the induced parameter a is de-
termined, we can easily distinguish the FUC from the
WUC. For example, with the Set A input data, if we get
0.224 ≤ a ≤ 0.226, the mixing matrix satisfies the FUC
within 95% CL. From Fig. 1b we can also conclude that

1 In principle, the two methods, 4VKM and SVD, can give
identical results. However, in practice the number of input pa-
rameters which should be supplied by experiments is reduced
from four to three in SVD. This reduction in the number of a
priori experimental input values gives conceptually a much bet-
ter way to analyze the CKM mixing matrix. With the reduced
number of input parameters we can check the consistency be-
tween the independently measured CKM mixing matrix ele-
ments systematically, and we can investigate the inter-relations
among the mixing elements by varying a single parameter
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the FUC is violated if |Vtd| ≥ 0.02 or |Vtd| ≤ 0.004. If
|Vtd| ≥ 0.05, even the WUC is not satisfied. Figure 2b
shows that there is a strong correlation between |Vud| and
|Vcd|. This method can also be applied to the analysis
of lepton flavor mixing, in which only a few moduli are
presently measured.
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Appendix

A The singular-value-decomposition method

For a detailed description of this method we consider the
specific case with the input parameters, |Vus|, |Vub|, |Vcb|,
which is in Sect. 2. In this case we have to solve (5). Ac-
cording to this method, the matrix R can be decomposed
as a product of three matrices:

R = UWV T, (A1)

where

U =
1
2




−1 1 1 −1
−1 −1 −1 −1
−1 1 −1 1
−1 −1 1 1


 , (A2)

W =




2 0 0 0
0

√
2 0 0

0 0
√

2 0
0 0 0 0


 , (A3)

V =
1
2




−1
√

2 0 1
−1 0

√
2 −1

−1 0 −√
2 −1

−1 −√
2 0 1


 . (A4)

In general the matrices U and V are orthogonal in the
sense that their columns are orthonormal,

∑
i

UikUin = δkn, (A5)

∑
i

VikVin = δkn. (A6)

We note that this decomposition is not unique. For further
practical calculations of SVD we refer to [10]. The solu-
tions of (5) are obtained in two types, a special solution
and a general solution, which one can get in two differ-
ent ways. First, the special solution according to SVD is
calculated by defining the inverse of R as follows:

R = V [diag(1/wii)]UT (A7)

=
1
8




3 −1 3 −1
3 −1 −1 3

−1 3 3 −1
−1 3 −1 3


 , (A8)

where we take 1/wii = 0 if wii = 0. The matrix R is
unique and does not depend on the way how the matrix
R is decomposed. The special solution Xs is

Xs = RB. (A9)

The inverse matrix R does not satisfy the constraints
which must be obeyed in the general sense of the inverse,
namely, RR �= RR �= I. However, it satisfies RRB = B.
Therefore, we can introduce general solutions Xg such that

RXg = 0, (A10)

and we can add this to the special solution Xs. We can
see the general solutions of (A10) by simple guessing as
follows:

Xg = a(−1, 1, 1, −1)T, (A11)

where the coefficient a can take any real value. Actually
the coefficient a must be further confined in such a way
that the values of the mixing elements Vij should be within
the range [0, 1]. We can express the complete solutions as

X = Xg + Xs. (A12)

In algebraic terms, (5) defines R as a linear mapping from
the vector space of X to the vector space of B. If R is
singular, then there is some subspace of X, called the null
space, that is mapped to zero, RX = 0. The number of
linearly independent vectors that can be found in (A10)
is the dimension of the null space called the nullity of R.
In the three-generation quark-mixing case the nullity is 1.

B Case with input parameters of Set B

If we take the three independent input parameters |Vud|,
|Vus|, and |Vcd|, we can apply the same procedure to obtain
the remaining mixing elements. In this case the matrix (5)
becomes RX = B with

R =




1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1


 , (B1)

X = (|Vcs|2, |Vcb|2, |Vts|2, |Vtb|2)T, (B2)

B = (1 − |Vus|2, 1 − |Vub|2, 1 − |Vcd|2, 1 − |Vtd|2)T. (B3)

Two obvious relations from the weak unitary conditions
are

|Vub|2 = 1 − |Vud|2 − |Vus|2, (B4)
|Vtd|2 = 1 − |Vud|2 − |Vcd|2. (B5)



C.S. Kim, J.D. Kim: A flexible parameterization of the CKM matrix via the singular-value-decomposition method 61

Following the procedure described in the Appendix A, we
can write the total solution of X as follows:

|Vcs|2 = b + w1, (B6)
|Vcb|2 = −b + w2, (B7)
|Vts|2 = −b + w3, (B8)
|Vtb|2 = b + w4, (B9)

where

w1 =
1
4
(3 − |Vud|2 − 2|Vus|2 − 2|Vcd|2), (B10)

w2 =
1
4
(1 + |Vud|2 + 2|Vus|2 − 2|Vcd|2), (B11)

w3 =
1
4
(1 + |Vud|2 − 2|Vus|2 + 2|Vcd|2), (B12)

w4 =
1
4
(−1 + 3|Vud|2 + 2|Vus|2 + 2|Vcd|2), (B13)

and b is the newly introduced parameter. In this case,
if there is no flavor mixing, we can set b = 1/2. Equa-
tion (B9) shows that any values of |Vcs|, |Vcb|, |Vts|, |Vtb|
will determine the value of b. Further constraints are ap-
plied for the range of the parameter b by |Vij |2 ≥ 0:
bmin = max(−w1, −w4), bmax = min(w2, w3). For the FUC
we expand f in terms of the parameter b:

f = −(1 − |Vud|2)2b2

+ 2
[
|Vud|2|Vub|2(|Vtd|2 − |Vcd|2)

× (|Vcd|2w2 − |Vtd|2w4)(|Vcd|2 + |Vtd|2)
]
b

+ 2|Vud|2|Vub|2[|Vcd|2w2 + |Vtd|2w4]
− (|Vcd|2w2 − |Vtd|2w4)2 − |Vud|4|Vub|4. (B14)

Like the previous case we can get the boundaries of the
constraint (13) and denote the two roots of the quadratic
equation by b− and b+ (> b−).
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